31 research outputs found

    Subversion Over OpenNetInf and CCNx

    Get PDF
    We describe experiences and insights from adapting the Subversion version control system to use the network service of two information-centric networking (ICN) prototypes: OpenNetInf and CCNx. The evaluation is done using a local collaboration scenario, common in our own project work where a group of people meet and share documents through a Subversion repository. The measurements show a performance benefit already with two clients in some of the studied scenarios, despite being done on un-optimised research prototypes. The conclusion is that ICN clearly is beneficial also for non mass-distribution applications. It was straightforward to adapt Subversion to fetch updated files from the repository using the ICN network service. The adaptation however neglected access control which will need a different approach in ICN than an authenticated SSL tunnel. Another insight from the experiments is that care needs to be taken when implementing the heavy ICN hash and signature calculations. In the prototypes, these are done serially, but we see an opportunity for parallelisation, making use of current multi-core processors

    Ambient networks: Bridging heterogeneous network domains

    Get PDF
    Providing end-to-end communication in heterogeneous internetworking environments is a challenge. Two fundamental problems are bridging between different internetworking technologies and hiding of network complexity and differences from both applications and application developers. This paper presents abstraction and naming mechanisms that address these challenges in the Ambient Networks project. Connectivity abstractions hide the differences of heterogeneous internetworking technologies and enable applications to operate across them. A common naming framework enables end-to-end communication across otherwise independent internetworks and supports advanced networking capabilities, such as indirection or delegation, through dynamic bindings between named entities

    Experiments with Subversion Over OpenNetInf and CCNx

    Get PDF
    We describe experiences and insights from adapting the Subversion version control system to use the network service of two information-centric networking (ICN) prototypes: OpenNetInf and CCNx. The evaluation is done using a local collaboration scenario, common in our own project work where a group of people meet and share documents through a Subversion repository. The measurements show a performance benefit already with two clients in some of the studied scenarios, despite being done on un-optimised research prototypes. The conclusion is that ICN clearly is beneficial also for non mass-distribution applications

    Names, addresses and identities in ambient networks

    Get PDF
    Ambient Networks interconnect independent realms that may use different local network technologies and may belong to different administrative or legal entities. At the core of these advanced internetworking concepts is a flexible naming architecture based on dynamic indirections between names, addresses and identities. This paper gives an overview of the connectivity abstractions of Ambient Networks and then describes its naming architecture in detail, comparing and contrasting them to other related next-generation network architectures

    Towards goal-based autonomic networking

    Get PDF
    The ability to quickly deploy and efficiently manage services is critical to the telecommunications industry. Currently, services are designed and managed by different teams with expertise over a wide range of concerns, from high-level business to low level network aspects. Not only is this approach expensive in terms of time and resources, but it also has problems to scale up to new outsourcing and/or multi-vendor models, where subsystems and teams belong to different organizations. We endorse the idea, upheld among others in the autonomic computing community, that the network and system components involved in the provision of a service must be crafted to facilitate their management. Furthermore, they should help bridge the gap between network and business concerns. In this paper, we sketch an approach based on early work on the hierarchical organization of autonomic entities that possibly belong to different organizations. An autonomic entity governs over other autonomic entities by defining their goals. Thus, it is up to each autonomic entity to decide its line of actions in order to fulfill its goals, and the governing entity needs not know about the internals of its subordinates. We illustrate the approach with a simple but still rich example of a telecom service

    Will ICN Fly? A Case Study in Technology Adoption Abstract

    No full text
    Information-‐centric Networking (ICN) proposes a paradigm shift in the way we create global networks. ICN introduces new network primitives which operate on named data objects, regardless on which host they reside, therefore representing a clear departure from the host-‐centric paradigm of the current Internet. The peer-‐reviewed ICN literature documents several system design advantages over host-‐ centric networking. While ICN research is currently addressing several technical aspects that can facilitate future deployment for a range of scenarios, we also need to consider other aspects in technology adoption beyond technical superiority. In this paper we examine previous technological developments and pinpoint the economic, operational, societal, and policy-‐related aspects that should be paid attention to as we move forward in ICN deployment from isolated testbeds into real networks over the next decade

    The Secure Internet Indirection Infrastructure

    No full text
    (Secure-i 3) is a proposal for a flexible and secure overlay network that, if universally deployed, would effectively block a number of denial-of-service problems in the Internet. The Host Identity Protocol (HIP), on the other hand, is a proposal for deploying opportunistic, IPsec based end-to-end security, allowing any hosts to communicate in a secure way through the Internet. In this paper, we explore various possibilities for combining ideas from Secure-i 3 and HIP, thereby producing an architecture that is more efficient and secure than Secure-i 3 and more flexible and denial-of-service resistant than HIP.
    corecore